Altered Gene Expression Pathways in Duchenne Muscular Dystrophy
نویسندگان
چکیده
Duchenne muscular dystrophy (DMD) is caused by the absence of functional dystrophin (Blake et al. 2002). Dystrophin is a cytoskeleton protein normally expressed in the inner face of the plasma membrane (Ahn and Kunkel 1993). In normal skeletal muscle, dystrophin is associated with a complex of glycoproteins known as dystrophin-associated proteins (DAPs), providing a linkage between the extracellular matrix (ECM) and cytoskeleton (Batchelor and Winder 2006). Lack of dystrophin in dystrophic muscle results in loss of the complex integrity and allegedly impairs the stability of the plasma membrane causing mechanical stress fragility, and an increase in Ca2+ permeability (Alderton and Steinhardt 2000). But the pathophysiology of muscular dystrophy is not only explained by this increased mechanical fragility and a role for dystrophin and DAPs has been suggested as being part of a protein signaling complex involved in cell survival (Rando 2001). In this chapter we discuss evidence of such a role, which may evidence possible interactions between dystrophin and proteins other than those involved in DAP and possible cell location of dystrophin in regions other than the sarcolemma cytoskeleton.
منابع مشابه
P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...
متن کاملDetection of the Duplication in Exons 56-63 of Duchenne Muscular Dystrophy Patients with MLPA
Background Duchenne Muscular Dystrophy (DMD) is a deadly X-linked recessive disorder. This genetic disorder affects 1 among 3,500-5,000 males in the world. The majority of the patients are male, due to the type of inheritance. It affects most of the skeletal, the respiratory, and cardiac muscles, causing these vital organs to contract and eventually mortality.<br...
متن کاملExpanding the action of duplex RNAs into the nucleus: redirecting alternative splicing
Double-stranded RNAs are powerful agents for silencing gene expression in the cytoplasm of mammalian cells. The potential for duplex RNAs to control expression in the nucleus has received less attention. Here, we investigate the ability of small RNAs to redirect splicing. We identify RNAs targeting an aberrant splice site that restore splicing and production of functional protein. RNAs can targ...
متن کاملMolecular signatures of Emery-Dreifuss muscular dystrophy.
Mutations in genes encoding the nuclear envelope proteins emerin and lamin A/C lead to a range of tissue-specific degenerative diseases. These include dilated cardiomyopathy, limb-girdle muscular dystrophy and X-linked and autosomal dominant EDMD (Emery-Dreifuss muscular dystrophy). The molecular mechanisms underlying these disorders are poorly understood; however, recent work using animal mode...
متن کاملJagged 1 Rescues the Duchenne Muscular Dystrophy Phenotype
Duchenne muscular dystrophy (DMD), caused by mutations at the dystrophin gene, is the most common form of muscular dystrophy. There is no cure for DMD and current therapeutic approaches to restore dystrophin expression are only partially effective. The absence of dystrophin in muscle results in dysregulation of signaling pathways, which could be targets for disease therapy and drug discovery. P...
متن کامل